IPv4 addressing \& subnetting

+ fragmentation
CS335a - Introduction to Computer Networks
Kostis Triantafyllakis - ctriant@csd.uoc.gr

IPv4 header

Dotted-Decimal notation

bit \#
10010001 . 00001010 . 000000011
145

145.10.34.3

Classful IP addressing

Class A

126 (27-2) networks
~16,000,000 hosts
Class B

~16k (2^{14}) networks
~65k ($2^{16}-2$)hosts

Class C

~2M (2^{21}) networks
~254 ($2^{8}-2$)hosts

Unforeseen limitations to Classful Addressing

- The original designers never envisioned the current Internet growth
- Addresses were freely assigned to those who asked for them without concerns.
- The decision of 32 -bit addresses was wrong. 4,294,967,296 addresses are not enough
- The concept of the Classful Addressing was easy to understand and implement, but it was not efficient for a finite address space.
- /24 supports 254 hosts that is small
- /16 supports 65,534 hosts that is big

Subnetting

- The division of a single Class A, B or C network into smaller pieces
- What need led to Subnetting?
- Internet routing tables were beginning to grow
- Local admins had to request another network number from the Internet before a new network could be installed in their site.

Two-Level Classful Hierarchy

Three-Level Subnet Hierarchy

Network Prefix	Subnet Number	Host Number

Subnetting

Two-Level Classful Hierarchy

Network Prefix	Host Number

Three-Level Subnet Hierarchy

Network Prefix	Subnet Number	Host Number

- Subnet structure of a network is never visible outside the organization's private network
- Each organization is assigned one (or at most a few) network addresses from the IPv4 address space.
- The organization was free to assign a distinct sub-network number to each of its internal networks.

Subnetting

- The size of Internet routing table is not affected
- Rapid changing of routes within the private network do not affect the Internet routing table

Subnet mask

- Internet routers use only the Network prefix of the destination address to route the traffic to a subnet.
- Routers within a subnet use the Extended Network Prefix to route the traffic between the individual subnets.

Subnet design considerations

- What is the total number of subnets that are needed today?
- What is the total number of hosts that are needed today?
- What about the future?

Example

Define the subnet and host addresses

- An organization holds the network number:
193.1.1.0 / 24
- Needs to define 6 subnets
- The largest subnet is required to support 25 hosts

Example

Decimal: 193.1.1.0/24
 Binary: 11000001.00000001.00000001.00000000

- What is the number of bits required to define 6 subnets?
- 3 bits because $2^{3}=8$ subnets
- That leaves 2 spare subnets.
- What's the subnet mask?
- Since the organization is subnetting a $/ 24$ it needs 3 more bits into the mask or equivalently /27

Example

Base Net: $11000001.00000001 .00000001 .00000000=193.1 .1 .0 / 24$ Subnet \# 0: $11000001.00000001 .00000001 .00000000=193.1 .1 .0 / 27$
Subnet \#1: $11000001.00000001 .00000001 .00100000=193.1 .1 .32 / 27$
Subnet \#2: $11000001.00000001 .00000001 .01000000=193.1 .1 .64 / 27$
Subnet \#3: $11000001.00000001 .00000001 .01100000=193.1 .1 .96 / 27$
Subnet \#4: 11000001.00000001.00000001.100 $00000=193.1 .1 .128 / 27$
Subnet \#5: $11000001.00000001 .00000001 .10100000=193.1 .1 .160 / 27$
Subnet \#6: $11000001.00000001 .00000001 .11000000=193.1 .1 .192 / 27$
Subnet \#7: $11000001.00000001 .00000001 .11100000=193.1 .1 .224 / 27$

Example

Subnet \#2: $11000001.00000001 .00000001 .01000000=193.1 .1 .64 / 27$
Host \#1: $11000001.00000001 .00000001 .01000001=193.1 .1 .65 / 27$
Host \#2: $11000001.00000001 .00000001 .01000010=193.1 .1 .66 / 27$
Host \#3: $11000001.00000001 .00000001 .01000011=193.1 .1 .67 / 27$
Host \#4: $11000001.00000001 .00000001 .01000100=193.1 .1 .68 / 27$
Host \#5: $11000001.00000001 .00000001 .01000101=193.1 .1 .69 / 27$

Host \# 15: $11000001.00000001 .00000001 .01001111=193.1 .1 .79 / 27$
Host \# 16: $11000001.00000001 .00000001 .01010000=193.1 .1 .80 / 27$

Host \# 27: $11000001.00000001 .00000001 .01011011=193.1 .1 .91 / 27$
Host \#28: $11000001.00000001 .00000001 .01011100=193.1 .1 .92 / 27$
Host \#29: $11000001.00000001 .00000001 .01011101=193.1 .1 .93 / 27$
Host \#30: $11000001.00000001 .00000001 .01011110=193.1 .1 .94 / 27$

IP fragmentation

- Maximum Transmission Unit (MTU) defines the largest packet size that can traverse this path without suffering fragmentation
- If an IP datagram has size larger than the MTU, then it is fragmented into smaller pieces before it is sent.

Example: Suppose we want to transmit an IP datagram of size 3000 bytes through a link of MTU 500 bytes. How many fragments are produced and what are the values of the offset field in each of the headers?

Example

Example: Suppose we want to transmit an IP datagram of size 3000 bytes through a link of MTU 500 bytes. How many fragments are produced and what are the values of the offset field in each of the headers?

IP fragment payload $=500$ bytes (MTU) -20 bytes (min IPv4 header) $=480$ bytes
IP datagram of interest payload $=3000-20=2980$ bytes
Total \# of segments = IP datagram of interest payload / IP fragment payload
$=2980 / 480$
$=6.2$
$=7$ (The last packet will have smaller payload than the available 480 bytes)

Example

Example: Suppose we want to transmit an IP datagram of size 3000 bytes through a link of MTU 500 bytes. How many fragments are produced and what are the values of the offset field in each of the headers?

What about the header fields?

Segment 0:	0-479 bytes of original	offset $=0$
Segment 1:	480-959	offset $=60$
Segment 2:	960-1439	offset $=120$
Segment 3:	1440-1919	offset $=180$
Segment 4:	1920-2399	offset $=240$
Segment 5:	2400-2879	offset $=300$
Segment 6:	2880-2980	offset $=360$

