IPv4 addressing & subnetting + fragmentation

CS335a - Introduction to Computer Networks

Kostis Triantafyllakis - ctriant@csd.uoc.gr

IPv4 header

-		32	Bits		
8		8	8 8		8
Version	Header Length	Type of Service or DiffServ	Total Length		
Identifier		Flags	Fragment Offset		
Time	to Live	Protocol	Header		ksum
		Source	Address		
		Destinatio	on Address		
		Options			Padding

Dotted-Decimal notation

Classful IP addressing

Unforeseen limitations to Classful Addressing

- The original designers never envisioned the current Internet growth
- Addresses were freely assigned to those who asked for them without concerns.
- The decision of 32-bit addresses was wrong.
 4,294,967,296 addresses are not enough
- The concept of the Classful Addressing was easy to understand and implement, but it was not efficient for a finite address space.
 - /24 supports 254 hosts that is small
 - \circ /16 supports 65,534 hosts that is big

Subnetting

- The division of a single Class A, B or C network into smaller pieces
- What need led to Subnetting?
 - Internet routing tables were beginning to grow
 - Local admins had to request another network number from the Internet before a new network could be installed in their site.

Two-Level Classful Hierarchy

Subnetting

- Subnet structure of a network is never visible outside the organization's private network
- Each organization is assigned one (or at most a few) network addresses from the IPv4 address space.
 - The organization was free to assign a distinct sub-network number to each of its internal networks.

Subnetting

- The size of Internet routing table is not affected
- Rapid changing of routes within the private network do not affect the Internet routing table

Subnet mask

130.5.5.25/24 10000010.00000101.00000101.00011001

- Internet routers use only the Network prefix of the destination address to route the traffic to a subnet.
- Routers within a subnet use the Extended Network Prefix to route the traffic between the individual subnets.

- What is the total number of subnets that are needed today?
- What is the total number of hosts that are needed today?
- What about the future?

Example

Define the subnet and host addresses

- An organization holds the network number: 193.1.1.0 / 24
- Needs to define **6 subnets**
- The largest subnet is required to support **25 hosts**

Decimal: 193.1.1.0/24 Binary: 11000001.0000001.0000001.00000000

- What is the number of bits required to define 6 subnets?
 - 3bits because $2^3 = 8$ subnets
 - That leaves 2 spare subnets.

- What's the subnet mask?
 - Since the organization is subnetting a /24 it needs 3 more bits into the mask or equivalently /27

Base Net: <u>11000001.00000001.00000001.00000000</u> = 193.1.1.0/24 Subnet #0: 11000001.0000001.00000001.0000 = 193.1.1.0/27 Subnet #1: 11000001.0000001.00000001.0000001 0000 = 193.1.1.32/27 Subnet #2: 11000001.0000001.0000001.0000001 010 00000 = 193.1.1.64/27 Subnet #3: 11000001.0000001.00000001.011 00000 = 193.1.1.96/27 Subnet #4: 11000001.0000001.00000001.100 00000 = 193.1.1.128/27 Subnet #5: <u>11000001.0000001.0000001.</u> 00000 = 193.1.1.160/27 Subnet #6: 11000001.0000001.00000001.110 00000 = 193.1.1.192/27 Subnet #7: 11000001.0000001.00000001.111 00000 = 193.1.1.224/27

Example

Subnet #2: <u>11000001.00000001.00000001.010</u> **00000** = 193.1.1.64/27 Host #1: <u>11000001.00000001.00000001.010</u> **00001** = 193.1.1.65/27 Host #2: <u>11000001.00000001.00000001.010</u> **00010** = 193.1.1.66/27 Host #3: <u>11000001.00000001.00000001.010</u> **00011** = 193.1.1.67/27 Host #4: <u>11000001.00000001.00000001.010</u> **00100** = 193.1.1.68/27 Host #5: <u>11000001.00000001.00000001.010</u> **00101** = 193.1.1.69/27

Host #15: <u>11000001.0000001.0000001.010</u> **01111** = 193.1.1.79/27 Host #16: <u>11000001.00000001.0000001.010</u> **10000** = 193.1.1.80/27

Host #27: <u>11000001.00000001.0000001.010</u> **11011** = 193.1.1.91/27 Host #28: <u>11000001.00000001.00000001.010</u> **11100** = 193.1.1.92/27 Host #29: <u>11000001.00000001.00000001.010</u> **11101** = 193.1.1.93/27 Host #30: <u>11000001.00000001.00000001.010</u> **11110** = 193.1.1.94/27

IP fragmentation

- Maximum Transmission Unit (MTU) defines the largest packet size that can traverse this path without suffering fragmentation
- If an IP datagram has size larger than the MTU, then it is fragmented into smaller pieces before it is sent.

Example: Suppose we want to transmit an IP datagram of size 3000 bytes through a link of MTU 500 bytes. How many fragments are produced and what are the values of the offset field in each of the headers?

Example: Suppose we want to transmit an IP datagram of size 3000 bytes through a link of MTU 500 bytes. How many fragments are produced and what are the values of the offset field in each of the headers?

IP fragment payload = 500 bytes (MTU) - 20 bytes (min IPv4 header) = 480 bytes IP datagram of interest payload = 3000 - 20 = 2980 bytes

Total # of segments = IP datagram of interest payload / IP fragment payload

- = 2980 / 480
- = 6.2
- = 7 (The last packet will have smaller payload than the available 480 bytes)

Example: Suppose we want to transmit an IP datagram of size 3000 bytes through a link of MTU 500 bytes. How many fragments are produced and what are the values of the offset field in each of the headers?

What about the header fields?

Segment 0:	0 - 479 bytes of original	offset = 0	more = 1
Segment 1:	480 - 959	offset = 60	more = 1
Segment 2:	960 - 1439	offset = 120	more = 1
Segment 3:	1440 - 1919	offset = 180	more = 1
Segment 4:	1920 - 2399	offset = 240	more = 1
Segment 5:	2400 - 2879	offset = 300	more = 1
Segment 6:	2880 - 2980	offset = 360	more = 0